Transient Receptor Potential Ankyrin 1-dependent Activation of Extracellular Signal-regulated Kinase 2 in the Cerebral Cortices Contributes to Cortical Spreading Depolarization

Haoyang Li, Chenyi Wang, Ziyang Gong, Lingdi Nie, Jiaxin Xu, Minyan Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1β (IL-1β) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1β mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1β mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1β protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1β production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.

Original languageEnglish
Pages (from-to)90-100
Number of pages11
JournalNeuroscience
Volume543
DOIs
Publication statusPublished - 5 Apr 2024

Keywords

  • cortical spreading depolarization
  • extracellular signal-regulated kinase
  • interleukin-1β
  • migraine
  • neuroinflammation
  • transient receptor potential ankyrin 1

Fingerprint

Dive into the research topics of 'Transient Receptor Potential Ankyrin 1-dependent Activation of Extracellular Signal-regulated Kinase 2 in the Cerebral Cortices Contributes to Cortical Spreading Depolarization'. Together they form a unique fingerprint.

Cite this