Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

Suzanne M. Prober, Jonathan W. Leff, Scott T. Bates, Elizabeth T. Borer, Jennifer Firn, W. Stanley Harpole, Eric M. Lind, Eric W. Seabloom, Peter B. Adler, Jonathan D. Bakker, Elsa E. Cleland, Nicole M. Decrappeo, Elizabeth Delorenze, Nicole Hagenah, Yann Hautier, Kirsten S. Hofmockel, Kevin P. Kirkman, Johannes M.H. Knops, Kimberly J. La Pierre, Andrew S. MacdougallRebecca L. Mcculley, Charles E. Mitchell, Anita C. Risch, Martin Schuetz, Carly J. Stevens, Ryan J. Williams, Noah Fierer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

555 Citations (Scopus)


Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

Original languageEnglish
Pages (from-to)85-95
Number of pages11
JournalEcology Letters
Issue number1
Publication statusPublished - 1 Jan 2015
Externally publishedYes


  • Aboveground-belowground interactions
  • Archaea
  • Bacteria
  • Fungi
  • Grasslands
  • Microbial biogeography
  • Soil biodiversity

Cite this