TY - GEN
T1 - Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation
AU - Yang, Chaolong
AU - Yan, Yuyao
AU - Zhao, Weiguang
AU - Ye, Jianan
AU - Yang, Xi
AU - Hussain, Amir
AU - Dong, Bin
AU - Huang, Kaizhu
N1 - Publisher Copyright:
© 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2024
Y1 - 2024
N2 - 3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become a mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network’s flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network’s inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
AB - 3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become a mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network’s flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network’s inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
KW - Multi-view fusion
KW - Point cloud
KW - Semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85178593734&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-8184-7_1
DO - 10.1007/978-981-99-8184-7_1
M3 - Conference Proceeding
AN - SCOPUS:85178593734
SN - 9789819981830
T3 - Communications in Computer and Information Science
SP - 3
EP - 15
BT - Neural Information Processing - 30th International Conference, ICONIP 2023, Proceedings
A2 - Luo, Biao
A2 - Cheng, Long
A2 - Wu, Zheng-Guang
A2 - Li, Hongyi
A2 - Li, Chaojie
PB - Springer Science and Business Media Deutschland GmbH
T2 - 30th International Conference on Neural Information Processing, ICONIP 2023
Y2 - 20 November 2023 through 23 November 2023
ER -