TY - GEN
T1 - Thermal characterisation of unweighted and weighted networks
AU - Wang, Jianjia
AU - Wu, Hui
AU - Hancock, Edwin R.
N1 - Publisher Copyright:
© 2020 IEEE
PY - 2020
Y1 - 2020
N2 - Thermodynamic characterisations or analogies have proved to provide powerful tools for the statistical analysis of network populations or time series, together with the identification of structural anomalies that occur within them. For instance, classical Boltzmann statistics together with the corresponding partition function have been used to apply the tools of statistical physics to the analysis of variations in network structure. However, the physical analogy adopted in this analysis, together with the interpretation of the resulting system of particles is sometimes vague and remains an open question. This, in turn, has implications concerning the definition of quantities such as temperature and energy. In this paper, we take a novel view of the thermal characterisation where we regard the edges in a network as the particles of the thermal system. By considering networks with a fixed number of nodes we obtain a conservation law which applies to the particle occupation configuration. Using this interpretation, we provide a physical meaning for the temperature which is related to the number of network nodes and edges. This provides a fundamental description of a network as a thermal system. If we further interpret the elements of the adjacency matrix as the binary microstates associated with edges, this allows us to further extend the analysis to systems with edge-weights. We thus introduce the concept of the canonical ensemble into the thermal network description and the corresponding partition function and then use this to compute the thermodynamic quantities. Finally, we provide numerical experiments on synthetic and real-world data-sets to evaluate the thermal characterisations for both unweighted and weighted networks.
AB - Thermodynamic characterisations or analogies have proved to provide powerful tools for the statistical analysis of network populations or time series, together with the identification of structural anomalies that occur within them. For instance, classical Boltzmann statistics together with the corresponding partition function have been used to apply the tools of statistical physics to the analysis of variations in network structure. However, the physical analogy adopted in this analysis, together with the interpretation of the resulting system of particles is sometimes vague and remains an open question. This, in turn, has implications concerning the definition of quantities such as temperature and energy. In this paper, we take a novel view of the thermal characterisation where we regard the edges in a network as the particles of the thermal system. By considering networks with a fixed number of nodes we obtain a conservation law which applies to the particle occupation configuration. Using this interpretation, we provide a physical meaning for the temperature which is related to the number of network nodes and edges. This provides a fundamental description of a network as a thermal system. If we further interpret the elements of the adjacency matrix as the binary microstates associated with edges, this allows us to further extend the analysis to systems with edge-weights. We thus introduce the concept of the canonical ensemble into the thermal network description and the corresponding partition function and then use this to compute the thermodynamic quantities. Finally, we provide numerical experiments on synthetic and real-world data-sets to evaluate the thermal characterisations for both unweighted and weighted networks.
UR - http://www.scopus.com/inward/record.url?scp=85110410994&partnerID=8YFLogxK
U2 - 10.1109/ICPR48806.2021.9412920
DO - 10.1109/ICPR48806.2021.9412920
M3 - Conference Proceeding
AN - SCOPUS:85110410994
T3 - Proceedings - International Conference on Pattern Recognition
SP - 1641
EP - 1648
BT - Proceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th International Conference on Pattern Recognition, ICPR 2020
Y2 - 10 January 2021 through 15 January 2021
ER -