The Synergistic Effect of Cross-Linked and Electrostatic Self-Assembly Si/MXene Composites Anode for Highly Efficient Lithium-Ion Battery

Songjia Kong, Chenguang Liu*, Jiawei Ren, Tianchang Wang, Xianwei Geng, Yudan Yuan, Chun Zhao, Cezhou Zhao, Li Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Silicon is a promising anode material for high-performance lithium-ion batteries (LIBs), but its rapid capacity degradation has significantly hindered its large-scale application. In this study, we propose an in situ self-assembly polymerization method to fabricate a stable silicon-based anode by leveraging electrostatic self-assembly technology, in situ esterification, and amidation reactions. The incorporation of a cross-linked polymer, combined with the synergistic effects of electrostatic interactions between negatively charged MXene and positively charged silane-coupling-agent-modified silicon, offers a novel strategy for enhancing the electrochemical performance of LIBs. Notably, annealed electrodes with a 65 wt% nmSi-NH2/MXene ratio demonstrate outstanding electrochemical performance, achieving a capacity of 929.5 mAh g⁻¹ at a current density of 1 A g⁻¹ after 100 charge/discharge cycles. These findings suggest that the integration of cross-linked polymers and electrostatic self-assembly can significantly improve the intercalation and overall electrochemical performance of silicon anodes in lithium-ion batteries.

Original languageEnglish
Article number1210
JournalCoatings
Volume14
Issue number9
DOIs
Publication statusPublished - Sept 2024

Keywords

  • MXene
  • polymerization
  • self-assembly technology
  • Si-based lithium-ion batteries

Fingerprint

Dive into the research topics of 'The Synergistic Effect of Cross-Linked and Electrostatic Self-Assembly Si/MXene Composites Anode for Highly Efficient Lithium-Ion Battery'. Together they form a unique fingerprint.

Cite this