TY - JOUR
T1 - The five glucose-6-phosphatase paralogous genes are differentially regulated by insulin alone or combined with high level of amino acids and/or glucose in trout hepatocytes
AU - Lucie, Marandel
AU - Weiwei, Dai
AU - Stéphane, Panserat
AU - Sandrine, Skiba Cassy
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - A recent analysis of the newly sequenced rainbow trout (Oncorhynchus mykiss) genome suggested that duplicated gluconeogenic g6pc paralogues, fixed in this genome after the salmonid-specific 4th whole genome duplication, may have a role in the setting up of the glucose-intolerant phenotype in this carnivorous species. This should be due to the sub- or neo-functionalization of their regulation. In the present short communication we thus addressed the question of the regulation of these genes by insulin, hormone involved in the glucose homeostasis, and its interaction with glucose and amino acids in vitro. The stimulation of trout hepatocytes with insulin revealed an atypical up-regulation of g6pcb2 ohnologues and confirmed the sub- or neo-functionalization of the five g6pc genes at least at the regulatory level. Intriguingly, when hepatocytes were cultured with high levels of glucose and/or AAs in presence of insulin, most of the g6pc paralogues were up-regulated. It strongly suggested a cross-talk between insulin and nutrients for the regulation of these genes. Moreover these results strengthened the idea that g6pc duplicated genes may significantly contribute to the setting up of the glucose-intolerant phenotype in trout via their atypical regulation by insulin alone or in interaction with nutrients. These findings open new perspectives to better understand in vivo glucose-intolerant phenotype in trout fed a high carbohydrate diet.
AB - A recent analysis of the newly sequenced rainbow trout (Oncorhynchus mykiss) genome suggested that duplicated gluconeogenic g6pc paralogues, fixed in this genome after the salmonid-specific 4th whole genome duplication, may have a role in the setting up of the glucose-intolerant phenotype in this carnivorous species. This should be due to the sub- or neo-functionalization of their regulation. In the present short communication we thus addressed the question of the regulation of these genes by insulin, hormone involved in the glucose homeostasis, and its interaction with glucose and amino acids in vitro. The stimulation of trout hepatocytes with insulin revealed an atypical up-regulation of g6pcb2 ohnologues and confirmed the sub- or neo-functionalization of the five g6pc genes at least at the regulatory level. Intriguingly, when hepatocytes were cultured with high levels of glucose and/or AAs in presence of insulin, most of the g6pc paralogues were up-regulated. It strongly suggested a cross-talk between insulin and nutrients for the regulation of these genes. Moreover these results strengthened the idea that g6pc duplicated genes may significantly contribute to the setting up of the glucose-intolerant phenotype in trout via their atypical regulation by insulin alone or in interaction with nutrients. These findings open new perspectives to better understand in vivo glucose-intolerant phenotype in trout fed a high carbohydrate diet.
KW - Amino acids
KW - Duplicated genes
KW - Glucose
KW - Glucose-6-phosphatase
KW - Insulin
UR - http://www.scopus.com/inward/record.url?scp=84961174218&partnerID=8YFLogxK
U2 - 10.1007/s11033-016-3962-6
DO - 10.1007/s11033-016-3962-6
M3 - Article
C2 - 26896939
AN - SCOPUS:84961174218
SN - 0301-4851
VL - 43
SP - 207
EP - 211
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 4
ER -