Abstract
Pr0.57Ca0.43MnO3 nanoparticles with an average particle size of ∼20 nm have been synthesized using hydrothermal method in combination with post-annealing, and characterized using X-ray diffraction, X-ray photoelectron spectrometer, high-resolution transmission electron microscopy and superconducting quantum interference device magnetometery. The results show that the hydrothermal synthesis of Pr1-xCaxMnO3 compound below 240 °C is difficult. The Pr0.57Ca0.43MnO3 nanoparticles obtained by annealing the hydrothermal products at 900 °C for 2 h present an orthorhombic perovskite structure with the same lattice as bulk Pr0.6Sr0.4MnO3. Magnetic characterization reveals that the low-temperature antiferromagnetic and charge ordering transitions identified in bulk Pr0.57Ca0.43MnO3 are completely suppressed in the nanoparticles, while a ferromagnetic transition occurs at ∼110 K. The spin-freezing behavior at low temperature for the Pr0.57Ca0.43MnO3 nanoparticles is demonstrated.
Original language | English |
---|---|
Pages (from-to) | 96-100 |
Number of pages | 5 |
Journal | Materials Science and Engineering: B |
Volume | 136 |
Issue number | 1 |
DOIs | |
Publication status | Published - 15 Jan 2007 |
Externally published | Yes |
Keywords
- Charge ordering
- Magnetic properties
- Nanomaterials
- Perovskite manganese oxides