TY - JOUR
T1 - Significance of activation functions in developing an online classifier for semiconductor defect detection
AU - Ferdaus, Md Meftahul
AU - Zhou, Bangjian
AU - Yoon, Ji Wei
AU - Low, Kain Lu
AU - Pan, Jieming
AU - Ghosh, Joydeep
AU - Wu, Min
AU - Li, Xiaoli
AU - Thean, Aaron Voon Yew
AU - Senthilnath, J.
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/7/19
Y1 - 2022/7/19
N2 - In anomaly detection problems for advanced semiconductor devices, non-visual defects occur frequently. Machine learning (ML) algorithms have the advantage of identifying such defects. However, in this real-world problem, data comes sequentially in a streaming fashion, thus, we may not have sufficient data to train an ML model in batch mode. In such a scenario, online ML models are useful to detect defects immediately since they work in a single-pass mode. Besides, when data is collected from more realistic non-stationary monitoring environments, online ML models with evolving architecture are more practical. Thus, evolving and online ML models are developed in this work to detect defects in technology computer-aided design (TCAD)-based digital twin model of advanced nano-scaled semiconductor devices such as a fin field-effect transistor (FinFET) and a gate-all-around field-effect transistor (GAA-FET). Activation functions (AFs) in deep neural networks (DNNs) and membership functions (MFs) in neuro-fuzzy systems (NFSs) play an important role in the performance of those ML models. This work focuses on analyzing the effects of various AFs/MFs in our developed online ML models while detecting defects in real-world nano-scaled semiconductor devices, where significant training samples are not available. From various semiconductor datasets having fewer samples, it has been observed that the proposed evolving neuro-fuzzy system (ENFS) with Leaky-ReLU MF performs better (improvement in the range of 1.9% to 30.8% considering overall classification accuracy) than the other DNN or ENFS-based online ML models. Having an evolving architecture and online learning mechanism, besides anomaly detection, the proposed model's performance has also been evaluated for handling large data streams problems with concept drift. The performance of the proposed method has been compared with some recently developed baselines under the prequential test-then-train protocol. The classification rates of the proposed method has an improvement in the range of 1.1% to 65.9% than the existing methods. The code of this work has been made publicly available at https://github.com/MdFerdaus/LREC.
AB - In anomaly detection problems for advanced semiconductor devices, non-visual defects occur frequently. Machine learning (ML) algorithms have the advantage of identifying such defects. However, in this real-world problem, data comes sequentially in a streaming fashion, thus, we may not have sufficient data to train an ML model in batch mode. In such a scenario, online ML models are useful to detect defects immediately since they work in a single-pass mode. Besides, when data is collected from more realistic non-stationary monitoring environments, online ML models with evolving architecture are more practical. Thus, evolving and online ML models are developed in this work to detect defects in technology computer-aided design (TCAD)-based digital twin model of advanced nano-scaled semiconductor devices such as a fin field-effect transistor (FinFET) and a gate-all-around field-effect transistor (GAA-FET). Activation functions (AFs) in deep neural networks (DNNs) and membership functions (MFs) in neuro-fuzzy systems (NFSs) play an important role in the performance of those ML models. This work focuses on analyzing the effects of various AFs/MFs in our developed online ML models while detecting defects in real-world nano-scaled semiconductor devices, where significant training samples are not available. From various semiconductor datasets having fewer samples, it has been observed that the proposed evolving neuro-fuzzy system (ENFS) with Leaky-ReLU MF performs better (improvement in the range of 1.9% to 30.8% considering overall classification accuracy) than the other DNN or ENFS-based online ML models. Having an evolving architecture and online learning mechanism, besides anomaly detection, the proposed model's performance has also been evaluated for handling large data streams problems with concept drift. The performance of the proposed method has been compared with some recently developed baselines under the prequential test-then-train protocol. The classification rates of the proposed method has an improvement in the range of 1.1% to 65.9% than the existing methods. The code of this work has been made publicly available at https://github.com/MdFerdaus/LREC.
KW - Defect detection
KW - Leaky ReLU
KW - Online learning
KW - Prequential
KW - Semiconductors
UR - http://www.scopus.com/inward/record.url?scp=85129852529&partnerID=8YFLogxK
U2 - 10.1016/j.knosys.2022.108818
DO - 10.1016/j.knosys.2022.108818
M3 - Article
AN - SCOPUS:85129852529
SN - 0950-7051
VL - 248
JO - Knowledge-Based Systems
JF - Knowledge-Based Systems
M1 - 108818
ER -