Robot in a China Shop: Using Reinforcement Learning for Location-Specific Navigation Behaviour

Bian Xihan, Oscar Mendez, Simon Hadfield

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

2 Citations (Scopus)

Abstract

Robots need to be able to work in multiple different environments. Even when performing similar tasks, different behaviour should be deployed to best fit the current environment. In this paper, We propose a new approach to navigation, where it is treated as a multi-task learning problem. This enables the robot to learn to behave differently in visual navigation tasks for different environments while also learning shared expertise across environments. We evaluated our approach in both simulated environments as well as real-world data. Our method allows our system to converge with a 26% reduction in training time, while also increasing accuracy.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5959-5965
Number of pages7
ISBN (Electronic)9781728190778
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'Robot in a China Shop: Using Reinforcement Learning for Location-Specific Navigation Behaviour'. Together they form a unique fingerprint.

Cite this