Abstract
This paper presents an approach to analyzing consumers’ e-commerce site usage and browsing motifs through pattern mining and surfing behavior. User-generated clickstream is first stored in a client site browser. We build an ingestion pipeline to capture the high-velocity data stream from a client-side browser through Apache Storm, Kafka, and Cassandra. Given the consumer’s usage pattern, we uncover the user’s browsing intent through n-grams and Collocation methods. An innovative clustering technique is constructed through the Expectation-Maximization algorithm with Gaussian Mixture Model. We discuss a framework for predicting a user’s clicks based on the past click sequences through higher order Markov Chains. We developed our model on top of a big data Lambda Architecture which combines high throughput Hadoop batch setup with low latency real-time framework over a large distributed cluster. Based on this approach, we developed an experimental setup for an optimized Storm topology and enhanced Cassandra database latency to achieve real-time responses. The theoretical claims are corroborated with several evaluations in Microsoft Azure HDInsight Apache Storm deployment and in the Datastax distribution of Cassandra. The paper demonstrates that the proposed techniques help user experience optimization, building recently viewed products list, market-driven analyses, and allocation of website resources.
Original language | English |
---|---|
Pages (from-to) | 1829-1859 |
Number of pages | 31 |
Journal | Electronic Commerce Research |
Volume | 23 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 2023 |
Externally published | Yes |
Keywords
- Apache storm
- Cassandra
- Clickstream analytics
- Datastax
- Real-time big data analytics
- Real-time data ingestion