Polyp-Mamba: Polyp Segmentation with Visual Mamba

Zhongxing Xu, Feilong Tang*, Zhe Chen, Zheng Zhou, Weishan Wu, Yuyao Yang, Yu Liang, Jiyu Jiang, Xuyue Cai, Jionglong Su*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

5 Citations (Scopus)

Abstract

Accurate segmentation of polyps is crucial for efficient colorectal cancer detection during the colonoscopy screenings. State Space Models, exemplified by Mamba, have recently emerged as a promising approach, excelling in long-range interaction modeling with linear computational complexity. However, previous methods do not consider the cross-scale dependencies of different pixels and the consistency in feature representations and semantic embedding, which are crucial for polyp segmentation. Therefore, we introduce Polyp-Mamba, a novel unified framework aimed at overcoming the above limitations by integrating multi-scale feature learning with semantic structure analysis. Specifically, our framework includes a Scale-Aware Semantic module that enables the embedding of multi-scale features from the encoder to achieve semantic information modeling across both intra- and inter-scales, rather than the single-scale approach employed in prior studies. Furthermore, the Global Semantic Injection module is deployed to inject scale-aware semantics into the corresponding decoder features, aiming to fuse global and local information and enhance pyramid feature representation. Experimental results across five challenging datasets and six metrics demonstrate that our proposed method not only surpasses state-of-the-art methods but also sets a new benchmark in the field, underscoring the Polyp-Mamba framework’s exceptional proficiency in the polyp segmentation tasks.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel
PublisherSpringer Science and Business Media Deutschland GmbH
Pages510-521
Number of pages12
ISBN (Print)9783031721106
DOIs
Publication statusPublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15008 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Mamba
  • Polyp Segmentation
  • Scale-Aware Semantic

Fingerprint

Dive into the research topics of 'Polyp-Mamba: Polyp Segmentation with Visual Mamba'. Together they form a unique fingerprint.

Cite this