TY - GEN
T1 - Neurons Perception Dataset for RoboMaster AI Challenge
AU - Li, Haoran
AU - Duan, Zicheng
AU - Li, Jiaqi
AU - Ma, Mingjun
AU - Chen, Yaran
AU - Zhao, Dongbin
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - From virtual game to physical robot, games have witnessed the development of artificial intelligence (AI) technology, especially the data-driven technology represented by deep learning. Compared with virtual games, a physical robot game such as RoboMaster AI challenge needs to build a complete closed-loop architecture composed of perception, planning, control, and decision-making to support autonomous confrontation. Perception, as the eye of the robot, its performance in the complex environment depends on a massive dataset. Although there are many open perception datasets, these datasets are difficult to meet the needs of RoboMaster AI challenge due to the high dynamics of the task, the distinctiveness of the objects, and limited computing resources. In this paper, we release a dataset named Neurons11Neurons is a team dedicated to promoting the development of robot with deep neural network. We will release the code and dataset at https://github.com/DRL-CASIA/NeuronsDataset. perception dataset for RoboMaster AI challenge, which covers 3 tasks including monocular depth estimation, lightweight object detection, and multi-view 3D object detection, and makes up the data blank in this field. In addition, we also evaluate State-Of-The-Art (SOTA) methods on each task, hoping to provide an impartial benchmark for the development of perception algorithm.
AB - From virtual game to physical robot, games have witnessed the development of artificial intelligence (AI) technology, especially the data-driven technology represented by deep learning. Compared with virtual games, a physical robot game such as RoboMaster AI challenge needs to build a complete closed-loop architecture composed of perception, planning, control, and decision-making to support autonomous confrontation. Perception, as the eye of the robot, its performance in the complex environment depends on a massive dataset. Although there are many open perception datasets, these datasets are difficult to meet the needs of RoboMaster AI challenge due to the high dynamics of the task, the distinctiveness of the objects, and limited computing resources. In this paper, we release a dataset named Neurons11Neurons is a team dedicated to promoting the development of robot with deep neural network. We will release the code and dataset at https://github.com/DRL-CASIA/NeuronsDataset. perception dataset for RoboMaster AI challenge, which covers 3 tasks including monocular depth estimation, lightweight object detection, and multi-view 3D object detection, and makes up the data blank in this field. In addition, we also evaluate State-Of-The-Art (SOTA) methods on each task, hoping to provide an impartial benchmark for the development of perception algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85140752853&partnerID=8YFLogxK
U2 - 10.1109/IJCNN55064.2022.9892040
DO - 10.1109/IJCNN55064.2022.9892040
M3 - Conference Proceeding
AN - SCOPUS:85140752853
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 International Joint Conference on Neural Networks, IJCNN 2022
Y2 - 18 July 2022 through 23 July 2022
ER -