Monte-Carlo Tree Search with Prioritized Node Expansion for Multi-Goal Task Planning

Kai Pfeiffer, Leonardo Edgar, Quang Cuong Pham

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

1 Citation (Scopus)

Abstract

Symbolic task planning for robots is computationally challenging due to the combinatorial complexity of the possible action space. This fact is amplified if there are several sub-goals to be achieved due to the increased length of the action sequences. In this work, we propose a multi-goal symbolic task planner for deterministic decision processes based on Monte Carlo Tree Search. We augment the algorithm by prioritized node expansion which prioritizes nodes that already have fulfilled some sub-goals. Due to its linear complexity in the number of sub-goals, our algorithm is able to identify symbolic action sequences of 145 elements to reach the desired goal state with up to 48 sub-goals while the search tree is limited to under 6500 nodes. We use action reduction based on a kinematic reachability criterion to further ease computational complexity. We combine our algorithm with object localization and motion planning and apply it to a real-robot demonstration with two manipulators in an industrial bearing inspection setting.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8255-8261
Number of pages7
ISBN (Electronic)9781665491907
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Monte-Carlo Tree Search with Prioritized Node Expansion for Multi-Goal Task Planning'. Together they form a unique fingerprint.

Cite this