TY - JOUR
T1 - Lewis functional nanodiamonds for efficient metal-free photocatalytic CO2 reduction
AU - Gao, Xiaowu
AU - Han, Xinyue
AU - Zhao, Ziwei
AU - Huang, Ning Yu
AU - Jiao, Keran
AU - Song, Pengfei
AU - Zhu, Jiaqi
AU - Wang, Yongjie
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - Artificial photosynthesis of fuels and valuable compounds from CO2 and H2O, as a flawless method, has aroused universal interest. Metal-free catalytic materials with balanced efficiency and stability have rarely been demonstrated. To date, emerging carbon-based photocatalysts promise to break the ordeal of extreme environments for catalysts, leading to practical industrial applications. Among them, surface functional group-modified nanodiamonds offer additional possibilities in terms of long-term stability and tunable catalytic activity. In this work, the nature of distinctions in photocatalytic efficacy induced by two varieties of NDs modified with distinct Lewis acid-base functional groups was also systematically investigated. Furthermore, by using a bottom-up approach, the three-dimensional g-C3N4 (3D CN) loaded with nanodiamond (ND) functionalized with amino and carboxyl groups, has been demonstrated as an impressive metal-free photocatalyst for photosynthetic production of CO. Combining in situ photoelectrochemical analysis and density functional theory, the mechanism of heterojunction formation between 3D CN and NDs modified with different functional groups was elucidated from kinetic and thermodynamic perspectives. The synergistic CO production rate of amino-modified NDs was found to be roughly 1.97 times higher than that of carboxyl-modified NDs. This pioneering work introduces promising sp3-hybridized ND materials into photoreduction CO2 systems in terms of surface chemistry, helping to establish an improved understanding of this emerging carbon material.
AB - Artificial photosynthesis of fuels and valuable compounds from CO2 and H2O, as a flawless method, has aroused universal interest. Metal-free catalytic materials with balanced efficiency and stability have rarely been demonstrated. To date, emerging carbon-based photocatalysts promise to break the ordeal of extreme environments for catalysts, leading to practical industrial applications. Among them, surface functional group-modified nanodiamonds offer additional possibilities in terms of long-term stability and tunable catalytic activity. In this work, the nature of distinctions in photocatalytic efficacy induced by two varieties of NDs modified with distinct Lewis acid-base functional groups was also systematically investigated. Furthermore, by using a bottom-up approach, the three-dimensional g-C3N4 (3D CN) loaded with nanodiamond (ND) functionalized with amino and carboxyl groups, has been demonstrated as an impressive metal-free photocatalyst for photosynthetic production of CO. Combining in situ photoelectrochemical analysis and density functional theory, the mechanism of heterojunction formation between 3D CN and NDs modified with different functional groups was elucidated from kinetic and thermodynamic perspectives. The synergistic CO production rate of amino-modified NDs was found to be roughly 1.97 times higher than that of carboxyl-modified NDs. This pioneering work introduces promising sp3-hybridized ND materials into photoreduction CO2 systems in terms of surface chemistry, helping to establish an improved understanding of this emerging carbon material.
UR - http://www.scopus.com/inward/record.url?scp=85197868406&partnerID=8YFLogxK
U2 - 10.1039/d4ta02877e
DO - 10.1039/d4ta02877e
M3 - Article
AN - SCOPUS:85197868406
SN - 2050-7488
VL - 12
SP - 32745
EP - 32759
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 47
ER -