TY - JOUR
T1 - Interpretable deep cross networks unveiled common signatures of dysregulated epitranscriptomes across 12 cancer types
AU - Xia, Rong
AU - Yin, Xiangyu
AU - Huang, Jiaming
AU - Chen, Kunqi
AU - Ma, Jiongming
AU - Wei, Zhen
AU - Su, Jionglong
AU - Blake, Neil
AU - Rigden, Daniel J.
AU - Meng, Jia
AU - Song, Bowen
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/12/10
Y1 - 2024/12/10
N2 - Cancer is a complex and multifaceted group of diseases characterized by uncontrolled cell growth that leads to the formation of malignant tumors. Recent studies suggest that N6-methyladenosine (m6A) RNA methylation plays pivotal roles in cancer pathology by influencing various cellular processes. However, the degree to which these mechanisms are shared across different cancer types remains unclear. In this study, we analyze an expansive array of 167 m6A epitranscriptome profiles covering 12 distinct cancer types and their originating normal tissues. We trained 12 distinct, cancer type-specific interpretable deep cross network models, which successfully distinguish between specific pairs of normal and cancer m6A contexts using integrated information from both the sequences and curated genomic knowledge. Interestingly, cross-cancer type testing indicated the existence of shared genomic patterns across various cancers at the epitranscriptome level. A pan-cancer model was subsequently developed to identify these shared patterns that could not be observed in a single cancer type. Our analysis uncovered, for the first time, a common epitranscriptome signature shared across multiple cancer types, particularly associated with RNA hybridization process and aberrant splicing. This highlights the importance of a comprehensive understanding of the pan-cancer epitranscriptome and holding potential implications in the development of RNA methylation-based therapeutics for various cancers.
AB - Cancer is a complex and multifaceted group of diseases characterized by uncontrolled cell growth that leads to the formation of malignant tumors. Recent studies suggest that N6-methyladenosine (m6A) RNA methylation plays pivotal roles in cancer pathology by influencing various cellular processes. However, the degree to which these mechanisms are shared across different cancer types remains unclear. In this study, we analyze an expansive array of 167 m6A epitranscriptome profiles covering 12 distinct cancer types and their originating normal tissues. We trained 12 distinct, cancer type-specific interpretable deep cross network models, which successfully distinguish between specific pairs of normal and cancer m6A contexts using integrated information from both the sequences and curated genomic knowledge. Interestingly, cross-cancer type testing indicated the existence of shared genomic patterns across various cancers at the epitranscriptome level. A pan-cancer model was subsequently developed to identify these shared patterns that could not be observed in a single cancer type. Our analysis uncovered, for the first time, a common epitranscriptome signature shared across multiple cancer types, particularly associated with RNA hybridization process and aberrant splicing. This highlights the importance of a comprehensive understanding of the pan-cancer epitranscriptome and holding potential implications in the development of RNA methylation-based therapeutics for various cancers.
KW - cancer cell lines
KW - epitranscriptomics
KW - genomic patterns
KW - interpretable deep cross networks
KW - mA
KW - MT: Bioinformatics
KW - N6-methyladenosine methylation
KW - therapeutic implications in oncology
UR - http://www.scopus.com/inward/record.url?scp=85208913446&partnerID=8YFLogxK
U2 - 10.1016/j.omtn.2024.102376
DO - 10.1016/j.omtn.2024.102376
M3 - Article
AN - SCOPUS:85208913446
SN - 2162-2531
VL - 35
JO - Molecular Therapy Nucleic Acids
JF - Molecular Therapy Nucleic Acids
IS - 4
M1 - 102376
ER -