TY - JOUR
T1 - In silico design of high-affinity antigenic peptides for HLA-B44
AU - Feng, Mei
AU - Chan, Kevin C.
AU - Zhong, Qinglu
AU - Zhou, Ruhong
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5
Y1 - 2024/5
N2 - Cancer cell-killing by CD8+ T cells demands effective tumor antigen presentation by human leukocyte antigen class I (HLA-I) molecules. Screening and designing highly immunogenic neoantigens require quantitative computations to reliably predict HLA-peptide binding affinities. Here, with all-atom molecular dynamics (MD) simulations and free energy perturbation (FEP) methods, we design a collection of antigenic peptide candidates through in silico mutagenesis studies on immunogenic neoantigens, yielding enhanced binding affinities to HLA-B*44:02. In-depth structural dissection shows that introducing positively charged residues such as arginine to position 6 or lysine to position 7 of the candidates triggers conformational shifts in both peptides and the antigen-binding groove of the HLA, following the “induced-fit” mechanism. Enhancement in binding affinities compared to the wild-type was found in three out of five mutated candidates. The HLA pocket, capable of accommodating positively charged residues in positions from 5 to 7, is designated as the “dynamic pocket”. Taken together, we showcase an effective structure-based binding affinity optimization framework for antigenic peptides of HLA-B*44:02 and underscore the importance of dynamic nature of the antigen-binding groove in concert with the anchoring motifs. This work provides structural insights for rational design of favorable HLA-peptide bindings and future developments in neoantigen-based therapeutics.
AB - Cancer cell-killing by CD8+ T cells demands effective tumor antigen presentation by human leukocyte antigen class I (HLA-I) molecules. Screening and designing highly immunogenic neoantigens require quantitative computations to reliably predict HLA-peptide binding affinities. Here, with all-atom molecular dynamics (MD) simulations and free energy perturbation (FEP) methods, we design a collection of antigenic peptide candidates through in silico mutagenesis studies on immunogenic neoantigens, yielding enhanced binding affinities to HLA-B*44:02. In-depth structural dissection shows that introducing positively charged residues such as arginine to position 6 or lysine to position 7 of the candidates triggers conformational shifts in both peptides and the antigen-binding groove of the HLA, following the “induced-fit” mechanism. Enhancement in binding affinities compared to the wild-type was found in three out of five mutated candidates. The HLA pocket, capable of accommodating positively charged residues in positions from 5 to 7, is designated as the “dynamic pocket”. Taken together, we showcase an effective structure-based binding affinity optimization framework for antigenic peptides of HLA-B*44:02 and underscore the importance of dynamic nature of the antigen-binding groove in concert with the anchoring motifs. This work provides structural insights for rational design of favorable HLA-peptide bindings and future developments in neoantigen-based therapeutics.
KW - Antigenic peptide
KW - High-affinity
KW - HLA-B44
UR - http://www.scopus.com/inward/record.url?scp=85190774011&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.131356
DO - 10.1016/j.ijbiomac.2024.131356
M3 - Article
C2 - 38574928
AN - SCOPUS:85190774011
SN - 0141-8130
VL - 267
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 131356
ER -