Abstract
High quality GaN films on SiC with low thermal boundary resistance (TBR) are achieved by employing an ultrathin low Al content AlGaN buffer layer. Compared with the conventional thick AlN buffer layer, the ultrathin buffer layer can not only improve the crystal quality of the subsequent GaN layer but also reduce the TBR at the GaN/SiC interface simultaneously. The ultrathin AlGaN buffer layer is introduced by performing a pretreatment of the SiC substrate with trimethylaluminum followed by the growth of GaN with an enhanced lateral growth rate. The enhanced lateral growth rate contributes to the formation of basal plane stacking faults (BSFs) in the GaN layer, where the BSFs can significantly reduce the threading dislocation density. We reveal underling mechanisms of reducing TBR and dislocation density by the ultrathin buffer layer. We propose this work is of great importance toward the performance improvement and cost reduction of higher power GaN-on-SiC electronics.
Original language | English |
---|---|
Article number | 052104 |
Journal | Applied Physics Letters |
Volume | 118 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Feb 2021 |
Externally published | Yes |