TY - JOUR
T1 - Ginsentide TP1 Protects Hypoxia-Induced Dysfunction and ER Stress-Linked Apoptosis
AU - Dutta, Bamaprasad
AU - Loo, Shining
AU - Kam, Antony
AU - Sze, Siu Kwan
AU - Tam, James P
PY - 2023/4/14
Y1 - 2023/4/14
N2 - Hypoxia-induced vascular endothelial dysfunction (VED) is a significant contributor to several severe human conditions, including heart disease, stroke, dementia, and cancer. However, current treatment options for VED are limited due to a lack of understanding of the underlying disease mechanisms and therapeutic leads. We recently discovered a heat-stable microprotein in ginseng, known as ginsentide TP1 that has been shown to reduce vascular dysfunction in cardiovascular disease models. In this study, we use a combination of functional assays and quantitative pulsed SILAC proteomics to determine new proteins synthesized in hypoxia and to show that ginsentide TP1 provides protection for human endothelial cells against hypoxia and ER stress. We found that hypoxia activates various pathways related to endothelium activation and monocyte adhesion, which in turn, impairs nitric oxide (NO) synthase activity, reduces NO bioavailability, and increases the production of reactive oxygen species that contribute to VED. Additionally, hypoxia triggers endoplasmic reticulum stress and initiates apoptotic signaling pathways associated with cardiovascular pathology. Treatment with ginsentide TP1 reduced surface adhesion molecule expression prevented activation of the endothelium and leukocyte adhesion, restored protein hemostasis, and reduced ER stress to protect against hypoxia-induced cell death. Ginsentide TP1 also restored NO signaling and bioavailability, reduced oxidative stress, and protected endothelial cells from endothelium dysfunction. In conclusion, this study shows that the molecular pathogenesis of VED induced by hypoxia can be mitigated by treatment with ginsentide TP1, which could be one of the key bioactive compounds responsible for the “cure-all” effect of ginseng. This research may lead to the development of new therapies for cardiovascular disorders.
AB - Hypoxia-induced vascular endothelial dysfunction (VED) is a significant contributor to several severe human conditions, including heart disease, stroke, dementia, and cancer. However, current treatment options for VED are limited due to a lack of understanding of the underlying disease mechanisms and therapeutic leads. We recently discovered a heat-stable microprotein in ginseng, known as ginsentide TP1 that has been shown to reduce vascular dysfunction in cardiovascular disease models. In this study, we use a combination of functional assays and quantitative pulsed SILAC proteomics to determine new proteins synthesized in hypoxia and to show that ginsentide TP1 provides protection for human endothelial cells against hypoxia and ER stress. We found that hypoxia activates various pathways related to endothelium activation and monocyte adhesion, which in turn, impairs nitric oxide (NO) synthase activity, reduces NO bioavailability, and increases the production of reactive oxygen species that contribute to VED. Additionally, hypoxia triggers endoplasmic reticulum stress and initiates apoptotic signaling pathways associated with cardiovascular pathology. Treatment with ginsentide TP1 reduced surface adhesion molecule expression prevented activation of the endothelium and leukocyte adhesion, restored protein hemostasis, and reduced ER stress to protect against hypoxia-induced cell death. Ginsentide TP1 also restored NO signaling and bioavailability, reduced oxidative stress, and protected endothelial cells from endothelium dysfunction. In conclusion, this study shows that the molecular pathogenesis of VED induced by hypoxia can be mitigated by treatment with ginsentide TP1, which could be one of the key bioactive compounds responsible for the “cure-all” effect of ginseng. This research may lead to the development of new therapies for cardiovascular disorders.
U2 - https://doi.org/10.1101/2023.04.12.536670
DO - https://doi.org/10.1101/2023.04.12.536670
M3 - Article
JO - bioRxiv
JF - bioRxiv
ER -