TY - GEN
T1 - FMRI brain networks as statistical mechanical ensembles
AU - Wu, Hui
AU - Wang, Jianjia
AU - Hancock, Edwin R.
N1 - Publisher Copyright:
© 2020 IEEE
PY - 2020
Y1 - 2020
N2 - In this paper, we apply ensemble methods from statistical physics to analyse fMRI brain networks for Alzheimer's patients. By mapping the nodes in a network to virtual particles in a thermal system, the microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. These representations are obtained by selecting a threshold on the BOLD time series correlations between nodes in different ways. The microcanonical ensemble corresponds to a set of networks with a fixed fraction of edges, while the canonical ensemble corresponds to the set networks with edges obtained with a fixed value of the threshold. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. Our treatment allows us to specify new partition functions for fMRI brain networks, and to explore a phase transition in the degree distribution. The resulting method turns out to be an effective tool to identify the most salient anatomical brain regions in Alzheimer's disease and provides a tool to distinguish groups of patients in different stages of the disease.
AB - In this paper, we apply ensemble methods from statistical physics to analyse fMRI brain networks for Alzheimer's patients. By mapping the nodes in a network to virtual particles in a thermal system, the microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. These representations are obtained by selecting a threshold on the BOLD time series correlations between nodes in different ways. The microcanonical ensemble corresponds to a set of networks with a fixed fraction of edges, while the canonical ensemble corresponds to the set networks with edges obtained with a fixed value of the threshold. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. Our treatment allows us to specify new partition functions for fMRI brain networks, and to explore a phase transition in the degree distribution. The resulting method turns out to be an effective tool to identify the most salient anatomical brain regions in Alzheimer's disease and provides a tool to distinguish groups of patients in different stages of the disease.
UR - http://www.scopus.com/inward/record.url?scp=85110419535&partnerID=8YFLogxK
U2 - 10.1109/ICPR48806.2021.9412101
DO - 10.1109/ICPR48806.2021.9412101
M3 - Conference Proceeding
AN - SCOPUS:85110419535
T3 - Proceedings - International Conference on Pattern Recognition
SP - 1694
EP - 1700
BT - Proceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th International Conference on Pattern Recognition, ICPR 2020
Y2 - 10 January 2021 through 15 January 2021
ER -