TY - GEN
T1 - Face verification using gabor wavelets and AdaBoost
AU - Mian, Zhou
AU - Hong, Wei
PY - 2006
Y1 - 2006
N2 - This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.
AB - This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.
UR - http://www.scopus.com/inward/record.url?scp=34047231942&partnerID=8YFLogxK
U2 - 10.1109/ICPR.2006.536
DO - 10.1109/ICPR.2006.536
M3 - Conference Proceeding
AN - SCOPUS:34047231942
SN - 0769525210
SN - 9780769525211
T3 - Proceedings - International Conference on Pattern Recognition
SP - 404
EP - 407
BT - Proceedings - 18th International Conference on Pattern Recognition, ICPR 2006
T2 - 18th International Conference on Pattern Recognition, ICPR 2006
Y2 - 20 August 2006 through 24 August 2006
ER -