Dynamic RON Degradation in AlGaN/GaN MIS-HEMTs With Si3N4 or Si3N4/ZrO2Passivation Layer

Ye Liang, Yuanlei Zhang, Xiuyuan He, Yinchao Zhao, Jiudun Yan, Mingxiang Wang, Wen Liu

Research output: Contribution to journalArticlepeer-review

Abstract

The dynamic <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> degradation in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) with different passivation layers (Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula> or Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> stack) under off-, semi-on, and ON-state stress have been investigated in this work. Under the OFF-state stress of 40 V, a 20% reduction in the maximum drain current has been observed in devices passivated with Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>, along with a degraded <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> that is 1.42 times higher than the initial <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula>. In contrast, devices passivated with Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> stack have only shown a 2% reduction, and the <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> degradation is only 1.03 times higher than the initial <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula>. This can be attributed to the different interface states present in the two devices. According to the multifrequency<inline-formula> <tex-math notation="LaTeX">$\vphantom{_{\int_{\text{a}}}}$</tex-math> </inline-formula> <italic>C</italic>&#x2013;<italic>V</italic> curves, the Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/GaN-cap interface trap density is in the range of 2<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">$^{\text{13}}$</tex-math> </inline-formula>&#x2013;5.5 <inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">$^{\text{13}}$</tex-math> </inline-formula> from <inline-formula> <tex-math notation="LaTeX">$\textit{E}_\textit{C}-\text{0.47}$</tex-math> </inline-formula> to <inline-formula> <tex-math notation="LaTeX">$\textit{E}_\textit{C}-\text{0.37}$</tex-math> </inline-formula> eV, and ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula>/GaN-cap interface trap density is in the range of 2.7 <inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">$^{\text{12}}$</tex-math> </inline-formula>&#x2013;1.2 <inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">$^{\text{13}}$</tex-math> </inline-formula> from <inline-formula> <tex-math notation="LaTeX">$\textit{E}_\textit{C}-\text{0.47}$</tex-math> </inline-formula> to <inline-formula> <tex-math notation="LaTeX">$\textit{E}_\textit{C}-\text{0.31}$</tex-math> </inline-formula> eV. Under the semi-on state stress, the dynamic <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> degradation exhibits a &#x201C;bell-shaped&#x201D; behavior in the Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> stack passivated sample. Arrenhius plots indicate that the sample passivated by Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula> has an activation energy of 0.06 eV, while the sample passivated by Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> stack has an activation energy of 0.16 eV, which means a deeper trap distribution. The <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> degradation under semi-on/ON-state stress in Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> passivated devices can be attributed to the hot-electron-related injection mechanism. Device designers must consider the trade-off between the high breakdown voltage (BV) and the <inline-formula> <tex-math notation="LaTeX">$\textit{R}_{\biosc{on}}$</tex-math> </inline-formula> degradation in Si<inline-formula> <tex-math notation="LaTeX">$_{\text{3}}$</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">$_{\text{4}}$</tex-math> </inline-formula>/ZrO<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> passivated devices.

Original languageEnglish
Pages (from-to)1-6
Number of pages6
JournalIEEE Transactions on Electron Devices
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • AlGaN/GaN
  • dynamic ON-resistance
  • high-<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$\kappa$</tex-math> </inline-formula> dielectric
  • metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs)

Fingerprint

Dive into the research topics of 'Dynamic RON Degradation in AlGaN/GaN MIS-HEMTs With Si3N4 or Si3N4/ZrO2Passivation Layer'. Together they form a unique fingerprint.

Cite this