Discovery of Hyperstable Noncanonical Plant-Derived Epidermal Growth Factor Receptor Agonist and Analogs

Shining Loo, Antony Kam, Bin Bin Li, Nan Feng, Xiaoliang Wang, James P. Tam*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Here, we report the discovery of the first plant-derived and noncanonical epidermal growth factor receptor (EGFR) agonist, the 36-residue bleogen pB1 from Pereskia bleo of the Cactaceae family. We show that bleogen pB1 is a low-affinity EGFR agonist using a suite of chemical, biochemical, cellular, and animal experiments which include incisor eruption and wound-healing mouse models. A focused positional scanning pB1 library of Ala- and d-amino acid scans yielded a high-affinity pB1 analog, [K29k]pB1, with a 60-fold-improved EGFR affinity and mitogenicity. We show that the potency of [K29k]pB1 and the epidermal growth factor (EGF) is comparable in a diabetic mouse wound-healing model. We also show that both bleogen pB1 and [K29k]pB1 are hyperstable, being >100-fold more stable than EGF against proteolytic degradation. Overall, our discovery of a noncanonical proteolytic-resistant EGFR agonist scaffold could open new avenues for developing wound healing and skin regeneration therapeutics and biomaterials.

Original languageEnglish
Article number64
Pages (from-to)7746-7759
Number of pages14
JournalJournal of Medicinal Chemistry
Volume64
Issue number11
DOIs
Publication statusPublished - 10 Jun 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Discovery of Hyperstable Noncanonical Plant-Derived Epidermal Growth Factor Receptor Agonist and Analogs'. Together they form a unique fingerprint.

Cite this