Decomposition and Coordination-Based Iterative Identification for a Class of Separable Nonlinear Models

Yihong Zhou*, Qinyao Liu, Dan Yang

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

This paper studies the parameter estimation problem for a class of separable nonlinear models, i.e., the RBF-ARX models. By exploiting the parameter separability property inherent in the RBF-ARX models, two gradient-based iterative sub-algorithms are derived to individually estimate the linear and nonlinear parameters based on the iterative search. Then a decomposition coordination-based iterative algorithm is proposed by integrating the sub-algorithms, which realizes high-precision iterative identification of all parameters. The effectiveness of the proposed algorithm is verified by a simulation example.

Original languageEnglish
Title of host publicationProceedings of the 16th International Conference on Modelling, Identification and Control, ICMIC 2024
EditorsQiang Chen, Tingli Su, Peng Liu, Weicun Zhang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages194-200
Number of pages7
ISBN (Print)9789819617760
DOIs
Publication statusPublished - 2025
Event16th International Conference on Modelling, Identification and Control, ICMIC 2024 - Datong, China
Duration: 9 Aug 202411 Aug 2024

Publication series

NameLecture Notes in Electrical Engineering
Volume1315 LNEE
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

Conference16th International Conference on Modelling, Identification and Control, ICMIC 2024
Country/TerritoryChina
CityDatong
Period9/08/2411/08/24

Keywords

  • iterative identification
  • parameter estimation
  • RBF-ARX

Fingerprint

Dive into the research topics of 'Decomposition and Coordination-Based Iterative Identification for a Class of Separable Nonlinear Models'. Together they form a unique fingerprint.

Cite this