COVID-19 Semantic Pneumonia Segmentation and Classification Using Artificial Intelligence

Mohammed J. Abdulaal, Ibrahim M. Mehedi, Abdullah M. Abusorrah, Abdulah Jeza Aljohani, Ahmad H. Milyani, Md Masud Rana*, Mohamed Mahmoud

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Coronavirus 2019 (COVID-19) has become a pandemic. The seriousness of COVID-19 can be realized from the number of victims worldwide and large number of deaths. This paper presents an efficient deep semantic segmentation network (DeepLabv3Plus). Initially, the dynamic adaptive histogram equalization is utilized to enhance the images. Data augmentation techniques are then used to augment the enhanced images. The second stage builds a custom convolutional neural network model using several pretrained ImageNet models and compares them to repeatedly trim the best-performing models to reduce complexity and improve memory efficiency. Several experiments were done using different techniques and parameters. Furthermore, the proposed model achieved an average accuracy of 99.6% and an area under the curve of 0.996 in the COVID-19 detection. This paper will discuss how to train a customized smart convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.

Original languageEnglish
Article number5297709
JournalContrast Media and Molecular Imaging
Volume2022
DOIs
Publication statusPublished - 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'COVID-19 Semantic Pneumonia Segmentation and Classification Using Artificial Intelligence'. Together they form a unique fingerprint.

Cite this