TY - JOUR
T1 - Bulk graphene-based composites with artificial nacre-like laminated structure
T2 - Microstructure and mechanical properties
AU - Liu, Fei
AU - Lu, Xiaolong
AU - Jin, Ge
AU - Liu, Weiwei
AU - Chen, Yao
N1 - Publisher Copyright:
© 2024
PY - 2024/8
Y1 - 2024/8
N2 - In this study, the bulk Cu/reduced graphene oxide (Cu/rGO) composites featuring an artificial nacre-like laminated structure were successfully fabricated using spark plasma sintering (SPS), and the microstructure and mechanical properties of the resulting composites were investigated. The Cu/rGO composites demonstrated a distinct laminated structure, and their relative densities increase with Cu addition. Moreover, the presence of trace amounts of in-situ interfacial reaction products (CuO and CuO2,) were observed to enhance the adhesive strength at the Cu-rGO interface. Mechanical testing of the composites showed notable improvements in both compressive strength and ductility compared to a bulk monolithic rGO sample. Specifically, the bulk rGO composites with a 35.05 wt% addition of Cu displayed an enhancement of ∼67 % in compressive strength and ∼19 % in ductility relative to the pure rGO sample. These improvements are attributed to synergetic strengthening and toughening mechanisms within the rGO composites. The enhanced strength and ductility of the Cu/rGO composites significantly boost their wear resistance. This research not only demonstrates the effectiveness of incorporating Cu into rGO matrices but also suggests a promising avenue for the development of novel bulk rGO composites with engineered laminated structures.
AB - In this study, the bulk Cu/reduced graphene oxide (Cu/rGO) composites featuring an artificial nacre-like laminated structure were successfully fabricated using spark plasma sintering (SPS), and the microstructure and mechanical properties of the resulting composites were investigated. The Cu/rGO composites demonstrated a distinct laminated structure, and their relative densities increase with Cu addition. Moreover, the presence of trace amounts of in-situ interfacial reaction products (CuO and CuO2,) were observed to enhance the adhesive strength at the Cu-rGO interface. Mechanical testing of the composites showed notable improvements in both compressive strength and ductility compared to a bulk monolithic rGO sample. Specifically, the bulk rGO composites with a 35.05 wt% addition of Cu displayed an enhancement of ∼67 % in compressive strength and ∼19 % in ductility relative to the pure rGO sample. These improvements are attributed to synergetic strengthening and toughening mechanisms within the rGO composites. The enhanced strength and ductility of the Cu/rGO composites significantly boost their wear resistance. This research not only demonstrates the effectiveness of incorporating Cu into rGO matrices but also suggests a promising avenue for the development of novel bulk rGO composites with engineered laminated structures.
KW - Bulk free-standing graphene composites
KW - Microstructure, Mechanical properties
KW - Wear resistance
UR - http://www.scopus.com/inward/record.url?scp=85199166508&partnerID=8YFLogxK
U2 - 10.1016/j.mtcomm.2024.109873
DO - 10.1016/j.mtcomm.2024.109873
M3 - Article
AN - SCOPUS:85199166508
SN - 2352-4928
VL - 40
JO - Materials Today Communications
JF - Materials Today Communications
M1 - 109873
ER -