TY - JOUR
T1 - Automatic offline-capable smartphone paper-based microfluidic device for efficient biomarker detection of Alzheimer's disease
AU - Duan, Sixuan
AU - Cai, Tianyu
AU - Liu, Fuyuan
AU - Li, Yifan
AU - Yuan, Hang
AU - Yuan, Wenwen
AU - Huang, Kaizhu
AU - Hoettges, Kai
AU - Chen, Min
AU - Lim, Eng Gee
AU - Zhao, Chun
AU - Song, Pengfei
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/6/15
Y1 - 2024/6/15
N2 - Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient disease detection. Results: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich c-ELISA for detecting the β-amyloid peptide 1–42 (Aβ 1–42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined “samples in, answers out” approach. Significance: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aβ 1–42, particularly in areas with low resources and limited communication infrastructure.
AB - Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient disease detection. Results: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich c-ELISA for detecting the β-amyloid peptide 1–42 (Aβ 1–42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined “samples in, answers out” approach. Significance: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aβ 1–42, particularly in areas with low resources and limited communication infrastructure.
KW - Alzheimer's disease
KW - Colorimetric enzyme-linked immunoassay (c-ELISA)
KW - Deep learning
KW - Microfluidic paper analysis devices (μPADs)
KW - Offline
KW - Smartphone
UR - http://www.scopus.com/inward/record.url?scp=85191436597&partnerID=8YFLogxK
U2 - 10.1016/j.aca.2024.342575
DO - 10.1016/j.aca.2024.342575
M3 - Article
C2 - 38740448
AN - SCOPUS:85191436597
SN - 0003-2670
VL - 1308
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
M1 - 342575
ER -