Atomic-Level Sn Doping Effect in Ga2O3 Films Using Plasma-Enhanced Atomic Layer Deposition

Yi Shen, Hong Ping Ma*, Lin Gu, Jie Zhang, Wei Huang, Jing Tao Zhu, Qing Chun Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

In this work, the atomic level doping of Sn into Ga2O3 films was successfully deposited by using a plasma-enhanced atomic layer deposition method. Here, we systematically studied the changes in the chemical state, microstructure evolution, optical properties, energy band alignment, and electrical properties for various configurations of the Sn-doped Ga2O3 films. The results indicated that all the films have high transparency with an average transmittance of above 90% over ultraviolet and visible light wavelengths. X-ray reflectivity and spectroscopic ellipsometry measurement indicated that the Sn doping level affects the density, refractive index, and extinction coefficient. In particular, the chemical microstructure and energy band structure for the Sn-doped Ga2O3 films were analyzed and discussed in detail. With an increase in the Sn content, the ratio of Sn–O bonding increases, but by contrast, the proportion of the oxygen vacancies decreases. The reduction in the oxygen vacancy content leads to an increase in the valence band maximum, but the energy bandgap decreases from 4.73 to 4.31 eV. Moreover, with the increase in Sn content, the breakdown mode transformed the hard breakdown into the soft breakdown. The C-V characteristics proved that the Sn-doped Ga2O3 films have large permittivity. These studies offer a foundation and a systematical analysis for assisting the design and application of Ga2O3 film-based transparent devices.

Original languageEnglish
Article number4256
JournalNanomaterials
Volume12
Issue number23
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Keywords

  • electrical properties
  • energy band alignment
  • GaO film
  • plasma-enhanced atomic layer deposition
  • Sn doping
  • X-ray photoelectron spectroscopy

Fingerprint

Dive into the research topics of 'Atomic-Level Sn Doping Effect in Ga2O3 Films Using Plasma-Enhanced Atomic Layer Deposition'. Together they form a unique fingerprint.

Cite this