Abstract
This work describes a novel microfluidic method to generate uniform water-in-oil (W/O) microspheres using the phase separation technique. Axiomatic design theory (ADT) was employed for the conceptual design of microchannel systems, and ADT verified that the proposed microfluidic system is a decoupled design. The integration of hydrodynamic flow focusing method and crossflow method is realized in a microfluidic device with oil phase and aqueous phase. The immiscible fluids are fed by continuous air pressure. By the hydrodynamic flow focusing method, the width of the dispersed focused aqueous phase is controlled. The focused flow enters T-junction geometry downstream, and the crossflow interferes with the focused flow. By varying the applied pressure to the crossflow, the W/O microspheres are formed at the T-junction. Based on this approach, the size of the W/O microspheres can be successfully controlled from 16 μm to 35 μm in diameter within about 5 of variation. The present method has advantages such as good sphericity, few satellite droplets, active control of the microsphere diameter, and high throughput with the simple and low cost process. To achieve the promising results, this integrating method reveals high potential for production of polymer based microspheres.
Original language | English |
---|---|
Article number | 044504 |
Journal | Journal of Manufacturing Science and Engineering |
Volume | 134 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Keywords
- crossflow
- hydrodynamic flow focusing
- microsphere
- uniformity