TY - JOUR
T1 - Advances in transcorneal electrical stimulation
T2 - From the eye to the brain
AU - Agadagba, Stephen K.
AU - Lim, Lee Wei
AU - Chan, Leanne Lai Hang
N1 - Publisher Copyright:
Copyright © 2023 Agadagba, Lim and Chan.
PY - 2023
Y1 - 2023
N2 - The mammalian brain is reported to contain about 106–109 neurons linked together to form complex networks. Physiologically, the neuronal networks interact in a rhythmic oscillatory pattern to coordinate the brain’s functions. Neuromodulation covers a broad range of techniques that can alter neuronal network activity through the targeted delivery of electrical or chemical stimuli. Neuromodulation can be used to potentially treat medical conditions and can serve as a research tool for studying neural functions. Typically, the main method of neuromodulation is to electrically stimulate specific structures in both the central and peripheral nervous systems via surgically implanted electrodes. Therefore, it is imperative to explore novel and safer methods for altering neuronal network activity. Transcorneal electrical stimulation (TES) has rapidly emerged as a non-invasive neuromodulatory technique that can exert beneficial effects on the brain through the eyes. There is substantial evidence to show that TES can change the brain oscillations in rodents. Moreover, the molecular data clearly shows that TES can also activate non-visual brain regions. In this review, we first summarize the use of TES in the retina and then discuss its effects in the brain through the eye-brain connection. We then comprehensively review the substantial evidence from electrophysiological, behavioral, and molecular studies on the role of TES on modulating neurons in the brain. Lastly, we discuss the implications and possible future directions of the research on TES as a non-invasive tool for neuromodulation of the brain via directly stimulating the mammalian eye.
AB - The mammalian brain is reported to contain about 106–109 neurons linked together to form complex networks. Physiologically, the neuronal networks interact in a rhythmic oscillatory pattern to coordinate the brain’s functions. Neuromodulation covers a broad range of techniques that can alter neuronal network activity through the targeted delivery of electrical or chemical stimuli. Neuromodulation can be used to potentially treat medical conditions and can serve as a research tool for studying neural functions. Typically, the main method of neuromodulation is to electrically stimulate specific structures in both the central and peripheral nervous systems via surgically implanted electrodes. Therefore, it is imperative to explore novel and safer methods for altering neuronal network activity. Transcorneal electrical stimulation (TES) has rapidly emerged as a non-invasive neuromodulatory technique that can exert beneficial effects on the brain through the eyes. There is substantial evidence to show that TES can change the brain oscillations in rodents. Moreover, the molecular data clearly shows that TES can also activate non-visual brain regions. In this review, we first summarize the use of TES in the retina and then discuss its effects in the brain through the eye-brain connection. We then comprehensively review the substantial evidence from electrophysiological, behavioral, and molecular studies on the role of TES on modulating neurons in the brain. Lastly, we discuss the implications and possible future directions of the research on TES as a non-invasive tool for neuromodulation of the brain via directly stimulating the mammalian eye.
KW - brain neural oscillations
KW - electrophysiology
KW - eye-brain connection
KW - neuromodulation
KW - plasticity
KW - transcorneal electrical stimulation
UR - http://www.scopus.com/inward/record.url?scp=85150336822&partnerID=8YFLogxK
U2 - 10.3389/fncel.2023.1134857
DO - 10.3389/fncel.2023.1134857
M3 - Review article
AN - SCOPUS:85150336822
SN - 1662-5102
VL - 17
JO - Frontiers in Cellular Neuroscience
JF - Frontiers in Cellular Neuroscience
M1 - 1134857
ER -