TY - JOUR
T1 - Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss)
AU - Dai, Weiwei
AU - Panserat, Stéphane
AU - Terrier, Frédéric
AU - Seiliez, Iban
AU - Skiba-Cassy, Sandrine
N1 - Publisher Copyright:
© 2014 the American Physiological Society.
PY - 2014/11/15
Y1 - 2014/11/15
N2 - Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout.
AB - Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout.
KW - Glucokinase
KW - Gluconeogenesis
KW - Glucose homeostasis
KW - Rainbow trout
KW - Rapamycin
KW - Target of rapamycin
UR - http://www.scopus.com/inward/record.url?scp=84922395155&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00166.2014
DO - 10.1152/ajpregu.00166.2014
M3 - Article
C2 - 25163922
AN - SCOPUS:84922395155
SN - 0363-6119
VL - 307
SP - R1231-R1238
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 10
ER -