Unobtrusive Blood Pressure Estimation using Personalized Autoregressive Models

Yali Zheng*, Qing Liu, Carmen Poon

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

2 Citations (Scopus)

Abstract

Cuffless and continuous blood pressure (BP) measurement using wearable devices is of great clinical value and health monitoring importance. Pulse arrival time (PAT) based technique was considered as one of the most promising methods for this purpose. Considering the dynamic and nonlinear relationship between BP, PAT and other cardiovascular variables, this paper proposes for the first time to use nonlinear autoregressive models with extra inputs (ARX) for BP estimation. The models were first trained by the baseline data of all 25 subjects to determine the model structure and then trained by individual data to obtain the personalized model parameters. To assess the effects of the dynamic and nonlinear factors, the data during water drinking and the first 5 minutes of recovery after drinking were used to validate the four models: linear regression, linear ARX, nonlinear regression and nonlinear ARX. The reference BP, which were measured by Finometer, were increased by 36.7±10.5 mmHg for SBP and 28.4 ±7.7 mmHg for DBP. This BP changes were best modelled by the nonlinear ARX, with Mean ± SD differences of 5.6 ± 8.8 mmHg for SBP and 3.8 ±5.8 mmHg for DBP. The study also showed that nonlinear factor significantly reduced the root mean square error (RSME) by about 50%, i.e., from 20.4 to 10.7 mmHg for SBP and 13.3 to 7.3 mmHg for DBP during drinking. While the effects of dynamic factors were not as significant as nonlinear factors, especially after introducing nonlinear factors.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5992-5995
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of 'Unobtrusive Blood Pressure Estimation using Personalized Autoregressive Models'. Together they form a unique fingerprint.

Cite this