Abstract
During mitosis of the Drosophila cortical syncytial divisions, actin-based membrane furrows separate adjacent spindles. Our genetic analysis indicates that the centrosomal protein Nuf is specifically required for recruitment of components to the furrows and the membrane-associated protein Dah is primarily required for the inward invagination of the furrow membrane. Recruitment of actin, anillin and peanut to the furrows occurs normally in dah-derived embryos. However, subsequent invagination of the furrows fails in dah-derived embryos and the septins become dispersed throughout the cytoplasm. This indicates that stable septin localization requires Dah-mediated furrow invagination. Close examination of actin and Dah localization in wild-type embryos reveals that they associate in adjacent particles during interphase and co-localize in the invaginating furrows during prophase and metaphase. We show that the Nuf centrosomal protein is required for recruiting the membrane-associated protein Dah to the furrows. In nuf-mutant embryos, much of the Dah does not reach the furrows and remains in a punctate distribution. This suggests that Dah is recruited to the furrows in vesicles and that the recruiting step is disrupted in nuf mutants. These studies lead to a model in which the centrosomes play an important role in the transport of membrane-associated proteins and other components to the developing furrows.
Original language | English |
---|---|
Pages (from-to) | 2885-2893 |
Number of pages | 9 |
Journal | Journal of Cell Science |
Volume | 112 |
Issue number | 17 |
Publication status | Published - 1999 |
Externally published | Yes |
Keywords
- Actin
- Centrosome
- Drosophila
- Embryo
- Membrane
- Septin