The Classification of Electrooculography Signals: A Significant Feature Identification via Mutual Information

Phua Jia Hwa, Jothi Letchumy Mahendra Kumar, Mamunur Rashid, Rabiu Muazu Musa, Mohd Azraai Mohd Razman, Norizam Sulaiman, Rozita Jailani, Anwar P.P. Abdul Majeed*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Stroke is currently known as the third most frequent reason for disability worldwide where the quality of life of its survivors in terms of their daily functioning is seriously affected. Brain-Computer Interface (BCI) is a system that can acquire and transform brain activity into readable outputs. This system is particularly beneficial to the people who encounter physical challenges in carrying out their daily life as the BCI outputs can be applied to BCI-based assistive devices. One of the BCI inputs that are frequently used is the Electrooculography (EOG) signal. EOG signal is the electrical voltage emitted from the movement of our eyeballs. This study aims to extract and identify significant statistical-based time-domain features based on the EOG signals acquired that would facilitate the classification of EOG movements via Support Vector Machine (SVM). The EOG signals were obtained via BioRadio. Five healthy subjects that ranged between 22 and 30 years old were involved in the EOG data acquisition. A total of 7 statistical time-domain features, namely, mean, standard deviation, variance, median, minimum, maximum, and standard error mean were extracted from all four BioRadio channels. The Mutual Information (MI) feature selection technique was employed to identify significant features. The 70:30 hold-out cross-validation technique was used in the study. It was demonstrated from the present investigation that an excellent comparable classification on both train and test dataset is attainable even by utilising the identified features. The findings further suggest the possible application of neurorehabilitation owing to the reduced computational expense resulting from the reduced feature set.

Original languageEnglish
Title of host publicationRecent Trends in Mechatronics Towards Industry 4.0 - Selected Articles from iM3F 2020
EditorsAhmad Fakhri Ab. Nasir, Ahmad Najmuddin Ibrahim, Ismayuzri Ishak, Nafrizuan Mat Yahya, Muhammad Aizzat Zakaria, Anwar P. P. Abdul Majeed
PublisherSpringer Science and Business Media Deutschland GmbH
Pages1005-1012
Number of pages8
ISBN (Print)9789813345966
DOIs
Publication statusPublished - 2022
Externally publishedYes
EventInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020 - Gambang, Malaysia
Duration: 6 Aug 20206 Aug 2020

Publication series

NameLecture Notes in Electrical Engineering
Volume730
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020
Country/TerritoryMalaysia
CityGambang
Period6/08/206/08/20

Keywords

  • Brain-computer interface (BCI)
  • Classification
  • Electrooculography (EOG)
  • Eyeball movement
  • Feature selection
  • Machine learning
  • Time-domain features

Fingerprint

Dive into the research topics of 'The Classification of Electrooculography Signals: A Significant Feature Identification via Mutual Information'. Together they form a unique fingerprint.

Cite this