Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites

Soroush Parvizi, Zohre Ahmadi, Mehran Jaberi Zamharir, Mehdi Shahedi Asl*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)

Abstract

ZrB2 ceramic (Z), ZrB2–25 vol% SiC composite (ZS) and ZrB2–25 vol% SiC composite doped with 5 wt% graphite (ZSG) were fabricated by spark plasma sintering process. The sintered samples were compared to investigate the effects of submicron SiC particles and graphite nano-flakes on sinterability, microstructure and mechanical properties of ZrB2-based ceramic matrix composites. Spark plasma sintering at 1900 °C for 7 min under 40 MPa resulted in fully dense ZS and ZSG samples but a relative density of 96.1% was achieved for Z sample. The growth of ZrB2 grains was effectively decelerated by addition of submicron SiC particles and graphite nano-flakes. Hardness values of 13.1, 19.5 and 16.6 GPa were measured for Z, ZS and ZSG samples, respectively, which verify the hardening effect of SiC and softening effect of graphite in ZrB2-based composites. By the simultaneous addition of SiC and graphite into ZrB2 matrix, the indentation fracture toughness of ZSG sample reached 6.7 MPa m½, meaningfully higher than those of Z and ZS samples with toughness values of 3.2 and 4.3 MPa m½, respectively. Such an improvement in the fracture toughness of ZSG nanocomposite was attributed to the presence of graphite nano-flakes as well as the in-situ formed ZrC and B4C nano-particles. Flexural strength of Z, ZS and ZSG samples reached 445, 624 and 631 MPa, respectively. Although SiC had a remarkable strengthening effect in the ZrB2-based ceramic, the addition of graphite together with SiC had not a significant impact on the flexural strength of composite material.

Original languageEnglish
Pages (from-to)10-17
Number of pages8
JournalInternational Journal of Refractory Metals and Hard Materials
Volume75
DOIs
Publication statusPublished - Sept 2018
Externally publishedYes

Keywords

  • Graphite nano-flakes
  • Mechanical properties
  • Microstructure
  • SiC
  • Spark plasma sintering
  • ZrB

Fingerprint

Dive into the research topics of 'Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites'. Together they form a unique fingerprint.

Cite this