Social Entropy Informer: A Multi-Scale Model-Data Dual-Driven Approach for Pedestrian Trajectory Prediction

Zihan Jiang, Chengxuan Qin, Rui Yang*, Bingyu Shi, Fuad E. Alsaadi, Zidong Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Pedestrian trajectory prediction is fundamental in various applications, such as autonomous driving, intelligent surveillance, and traffic management. Existing methods generally fall into two categories: model-driven approaches and data-driven approaches. However, both approaches have inherent limitations when applied to real-world scenarios, particularly in capturing the complex interactions between pedestrians and modeling the stochastic nature of human motion. Notably, there is a lack of research on integrating the strengths of model-driven and data-driven paradigms, which can better address these challenges. This paper aims to fill these limitations by proposing a novel model-data dual-driven approach, called Social Entropy Informer (SEI), for pedestrian trajectory prediction. SEI simultaneously models local and global pedestrian interactions while incorporating information entropy to capture human motion’s inherent randomness and uncertainty quantitatively, which provides a robust framework for predicting pedestrian trajectories. Furthermore, we propose a new loss function derived from information theory, which accounts for the stochasticity of pedestrian movement and enhances the model’s ability to generalize across diverse scenarios. The SEI framework integrates feature extraction, entropy-based stochastic modeling, and the new loss function, improving prediction accuracy and model interpretability. Experimental results demonstrate that SEI outperforms other benchmark methods in prediction accuracy.

Original languageEnglish
JournalIEEE Transactions on Intelligent Transportation Systems
DOIs
Publication statusAccepted/In press - 2025

Keywords

  • information entropy
  • informer model
  • model-data dual-driven
  • Pedestrian trajectory prediction
  • social interaction modeling
  • stochasticity modeling

Cite this