River flow lane detection and Kalman filtering-based B-spline lane tracking

King Hann Lim*, Kah Phooi Seng, Li Minn Ang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.

Original languageEnglish
Article number465819
JournalInternational Journal of Vehicular Technology
Volume2012
DOIs
Publication statusPublished - 2012
Externally publishedYes

Cite this