Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries

Xiaodong Hong, Rui Wang, Yue Liu, Jiawei Fu, Ji Liang*, Shixue Dou

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

229 Citations (Scopus)

Abstract

Owing to their low cost, high energy densities, and superior performance compared with that of Li-ion batteries, Li–S batteries have been recognized as very promising next-generation batteries. However, the commercialization of Li–S batteries has been hindered by the insulation of sulfur, significant volume expansion, shuttling of dissolved lithium polysulfides (LiPSs), and more importantly, sluggish conversion of polysulfide intermediates. To overcome these problems, a state-of-the-art strategy is to use sulfur host materials that feature chemical adsorption and electrocatalytic capabilities for LiPS species. In this review, we comprehensively illustrate the latest progress on the rational design and controllable fabrication of materials with chemical adsorbing and binding capabilities for LiPSs and electrocatalytic activities that allow them to accelerate the conversion of LiPSs for Li–S batteries. Moreover, the current essential challenges encountered when designing these materials are summarized, and possible solutions are proposed. We hope that this review could provide some strategies and theoretical guidance for developing novel chemical anchoring and electrocatalytic materials for high-performance Li–S batteries.

Original languageEnglish
Pages (from-to)144-168
Number of pages25
JournalJournal of Energy Chemistry
Volume42
DOIs
Publication statusPublished - Mar 2020
Externally publishedYes

Keywords

  • Chemical adsorption
  • Electrocatalysis
  • Lithium polysulfides
  • Li–S batteries
  • Shuttle effect

Fingerprint

Dive into the research topics of 'Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries'. Together they form a unique fingerprint.

Cite this