Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine

Yu Dong Zhang, Shufang Chen, Shui Hua Wang*, Jian Fei Yang, Preetha Phillips

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

120 Citations (Scopus)

Abstract

To classify brain images into pathological or healthy is a key pre-clinical state for patients. Manual classification is tiresome, expensive, time-consuming, and irreproducible. In this study, we aimed to present an automatic computer-aided system for brain-image classification. We used 90 T2-weighted images obtained by magnetic resonance images. First, we used weighted-type fractional Fourier transform (WFRFT) to extract spectrums from each magnetic resonance image. Second, we used principal component analysis (PCA) to reduce spectrum features to only 26. Third, those reduced spectral features of different samples were combined and were fed into support vector machine (SVM) and its two variants: generalized eigenvalue proximal SVM and twin SVM. A 5 × 5-fold cross-validation results showed that this proposed "WFRFT + PCA + generalized eigenvalue proximal SVM" yielded sensitivity of 99.53%, specificity of 92.00%, precision of 99.53%, and accuracy of 99.11%, which are comparable with the proposed "WFRFT + PCA + twin SVM" and better than the proposed "WFRFT + PCA + SVM." Besides, all three proposed methods were superior to eight state-of-the-art algorithms. Thus, WFRFT is effective, and the proposed methods can be used in practical.

Original languageEnglish
Pages (from-to)317-327
Number of pages11
JournalInternational Journal of Imaging Systems and Technology
Volume25
Issue number4
DOIs
Publication statusPublished - Dec 2015
Externally publishedYes

Keywords

  • fractional Fourier transform (FRFT)
  • machine learning
  • magnetic resonance imaging
  • nonparallel SVM
  • pathological brain detection
  • support vector machine (SVM)
  • weighted-type FRFT

Fingerprint

Dive into the research topics of 'Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine'. Together they form a unique fingerprint.

Cite this