Learning from few samples with memory network

Shufei Zhang, Kaizhu Huang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

1 Citation (Scopus)

Abstract

Neural Networks (NN) have achieved great success in pattern recognition and machine learning. However, the success of NNs usually relies on a sufficiently large number of samples. When fed with limited data, NN’s performance may be degraded significantly. In this paper, we introduce a novel neural network called Memory Network, which can learn better from limited data. Taking advantages of the memory from previous samples, the new model could achieve remarkable performance improvement on limited data. We demonstrate the memory network in Multi-Layer Perceptron (MLP). However, it keeps straightforward to extend our idea to other neural networks, e.g., Convolutional Neural Networks (CNN). We detail the network structure, present the training algorithm, and conduct a series of experiments to validate the proposed framework. Experimental results show that our model outperforms the traditional MLP and other competitive algorithms in two real data sets.

Original languageEnglish
Title of host publicationNeural Information Processing - 23rd International Conference, ICONIP 2016, Proceedings
EditorsKenji Doya, Kazushi Ikeda, Minho Lee, Akira Hirose, Seiichi Ozawa, Derong Liu
PublisherSpringer Verlag
Pages606-614
Number of pages9
ISBN (Print)9783319466866
DOIs
Publication statusPublished - 2016
Event23rd International Conference on Neural Information Processing, ICONIP 2016 - Kyoto, Japan
Duration: 16 Oct 201621 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9947 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Neural Information Processing, ICONIP 2016
Country/TerritoryJapan
CityKyoto
Period16/10/1621/10/16

Keywords

  • Memory
  • Multi-layer perceptron

Fingerprint

Dive into the research topics of 'Learning from few samples with memory network'. Together they form a unique fingerprint.

Cite this