Effective Severity Assessment of Parkinson's Disease using Wearable Sensors in Free-living IoT Environment

Ziheng Li, Yuting Zhao, Jun Qi*, Xulong Wang, Yun Yang, Po Yang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Internet of Things (IoT) Wearable technology plays a crucial role in assisting the diagnosis of Parkinson's disease (PD), and an efficient model for auxiliary diagnosis of the severity of PD can help reduce the workload for doctors. However, due to the influence of data collection environments and annotators, noisy label data is inevitable, which may have a negative impact on modeling the severity of PD. To address the above challenges, on the one hand, we collected a large number of activity signal data of Parkinson's patients in free-living environments, and on the other hand, we proposed an efficient PD stage assessment framework, which includes a noisy label processing method to alleviate the noisy label negative impact. Specifically, we collected signal data from 15 healthy controls and 68 PD patients through 12 activities, and then we proposed a framework for noisy label detection and correction. The experimental results on real PD data sets demonstrated that the proposed framework achieve 75.9% accuracy in PD stage assessment and significantly improve the classification performance of different types of basic classifiers, which is better than other noisy label detection algorithms and other PD stage assessment frameworks. Overall, in this work, we focus on modeling PD severity in free-living environments using a single wearable sensor and reducing the negative impact of noisy label data to better help PD patients manage the disease.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 29th International Conference on Parallel and Distributed Systems, ICPADS 2023
PublisherIEEE Computer Society
Pages900-906
Number of pages7
ISBN (Electronic)9798350330717
DOIs
Publication statusPublished - 2023
Event29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023 - Ocean Flower Island, Hainan, China
Duration: 17 Dec 202321 Dec 2023

Publication series

NameProceedings of the International Conference on Parallel and Distributed Systems - ICPADS
ISSN (Print)1521-9097

Conference

Conference29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
Country/TerritoryChina
CityOcean Flower Island, Hainan
Period17/12/2321/12/23

Keywords

  • Noisy Label detection
  • Parkinson's disease Disease stage diagnosis model
  • Wearable Sensor

Fingerprint

Dive into the research topics of 'Effective Severity Assessment of Parkinson's Disease using Wearable Sensors in Free-living IoT Environment'. Together they form a unique fingerprint.

Cite this