TY - GEN
T1 - Detecting Conversational Mental Manipulation with Intent-Aware Prompting
AU - Ma, Jiayuan
AU - Na, Hongbin
AU - Wang, Zimu
AU - Hua, Yining
AU - Liu, Yue
AU - Wang, Wei
AU - Chen, Ling
N1 - Publisher Copyright:
© 2025 Association for Computational Linguistics.
PY - 2025
Y1 - 2025
N2 - Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.
AB - Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.
UR - http://www.scopus.com/inward/record.url?scp=85218499648&partnerID=8YFLogxK
M3 - Conference Proceeding
AN - SCOPUS:85218499648
T3 - Proceedings - International Conference on Computational Linguistics, COLING
SP - 9176
EP - 9183
BT - Main Conference
A2 - Rambow, Owen
A2 - Wanner, Leo
A2 - Apidianaki, Marianna
A2 - Al-Khalifa, Hend
A2 - Di Eugenio, Barbara
A2 - Schockaert, Steven
PB - Association for Computational Linguistics (ACL)
T2 - 31st International Conference on Computational Linguistics, COLING 2025
Y2 - 19 January 2025 through 24 January 2025
ER -