TY - JOUR
T1 - Destructive and Non-Destructive Evaluation of Fibre-Reinforced Concrete
T2 - A Comprehensive Study of Mechanical Properties
AU - Najm, Hadee Mohammed
AU - Nanayakkara, Ominda
AU - Sabri, Mohanad Muayad Sabri
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Ultrasonic pulse velocity (UPV) and rebound hammer tests are accepted as alternatives to destructive testing to determine the compressive strength, dynamic modulus of elasticity, and Poisson’s ratio, which are needed for structural design. Although much work has been conducted for plain concrete, the research data for fibre-reinforced concrete (FRC) is insufficient. In this regard, this study explains the correlations between compressive strength, rebound hammer, and UPV tests for plain concrete and FRC contains 0.25%, 0.50%, and 1.00% of 30 mm and 50 mm long steel fibres. A total of 78 concrete cube and beam specimens were tested by direct, semi-direct, and indirect UPV and rebound hammer test methods. The study found that the rebound hammer test is more suitable for measuring the compressive strength of matured FRC than young concrete. The UPV test revealed that the volume fraction does not, but the length of steel fibres does affect the UPV results by the direct test method. The UPV direct method has the highest velocity, approximately two times the indirect velocity in FRC. UPV measurements can be effectively used to determine the dynamic modulus of elasticity and Poisson’s ratio of FRC. The dynamic elastic modulus increases while the Poisson’s ratio decreases for the same steel fibre length when at increasing FRC fibre content. The results of this study will be significant for non-destructive evaluations of FRC, while additional recommendations for future studies are presented at the end of the paper.
AB - Ultrasonic pulse velocity (UPV) and rebound hammer tests are accepted as alternatives to destructive testing to determine the compressive strength, dynamic modulus of elasticity, and Poisson’s ratio, which are needed for structural design. Although much work has been conducted for plain concrete, the research data for fibre-reinforced concrete (FRC) is insufficient. In this regard, this study explains the correlations between compressive strength, rebound hammer, and UPV tests for plain concrete and FRC contains 0.25%, 0.50%, and 1.00% of 30 mm and 50 mm long steel fibres. A total of 78 concrete cube and beam specimens were tested by direct, semi-direct, and indirect UPV and rebound hammer test methods. The study found that the rebound hammer test is more suitable for measuring the compressive strength of matured FRC than young concrete. The UPV test revealed that the volume fraction does not, but the length of steel fibres does affect the UPV results by the direct test method. The UPV direct method has the highest velocity, approximately two times the indirect velocity in FRC. UPV measurements can be effectively used to determine the dynamic modulus of elasticity and Poisson’s ratio of FRC. The dynamic elastic modulus increases while the Poisson’s ratio decreases for the same steel fibre length when at increasing FRC fibre content. The results of this study will be significant for non-destructive evaluations of FRC, while additional recommendations for future studies are presented at the end of the paper.
KW - Poisson’s ratio
KW - fibre-reinforced concrete (FRC)
KW - modulus of elasticity
KW - non-destructive test
KW - ultrasonic pulse velocity (UPV)
UR - http://www.scopus.com/inward/record.url?scp=85133029439&partnerID=8YFLogxK
U2 - 10.3390/ma15134432
DO - 10.3390/ma15134432
M3 - Article
AN - SCOPUS:85133029439
SN - 1996-1944
VL - 15
JO - Materials
JF - Materials
IS - 13
M1 - 4432
ER -