TY - JOUR
T1 - Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy
AU - Seong, Myeongsu
AU - Oh, Yoonho
AU - Lee, Kijoon
AU - Kim, Jae G.
N1 - Publisher Copyright:
© 2022
PY - 2022/7
Y1 - 2022/7
N2 - Background and Objective: Diffuse correlation spectroscopy (DCS) is an optical technique widely used to monitor blood flow. Recently, efforts have been made to derive new signal processing methods to minimize the systems used and shorten the signal processing time. Herein, we propose alternative approaches to obtain blood flow information via DCS by numerically integrating the temporal autocorrelation curves. Methods: We use the following methods: the inverse of K2 (IK2)—based on the framework of diffuse speckle contrast analysis—and the inverse of the numerical integration of squared g1 (INISg1) which, based on the normalized electric field autocorrelation curve, is more simplified than IK2. In addition, g1 thresholding is introduced to further reduce computational time and make the suggested methods comparable to the conventional nonlinear fitting approach. To validate the feasibility of the suggested methods, studies using simulation, liquid phantom, and in vivo settings were performed. In the meantime, the suggested methods were implemented and tested on three types of Arduino (Arduino Due, Arduino Nano 33 BLE Sense, and Portenta H7) to demonstrate the possibility of miniaturizing the DCS systems using microcotrollers for signal processing. Results: The simulation and experimental results confirm that both IK2 and INISg1 are sufficiently relevant to capture the changes in blood flow information. More interestingly, when g1 thresholding was applied, our results showed that INISg1 outperformed IK2. It was further confirmed that INISg1 with g1 thresholding implemented on a PC and Portenta H7, an advanced Arduino board, performed faster than did the deep learning-based, state-of-the-art processing method. Conclusion: Our findings strongly indicate that INISg1 with g1 thresholding could be an alternative approach to derive relative blood flow information via DCS, which may contribute to the simplification of DCS methodologies.
AB - Background and Objective: Diffuse correlation spectroscopy (DCS) is an optical technique widely used to monitor blood flow. Recently, efforts have been made to derive new signal processing methods to minimize the systems used and shorten the signal processing time. Herein, we propose alternative approaches to obtain blood flow information via DCS by numerically integrating the temporal autocorrelation curves. Methods: We use the following methods: the inverse of K2 (IK2)—based on the framework of diffuse speckle contrast analysis—and the inverse of the numerical integration of squared g1 (INISg1) which, based on the normalized electric field autocorrelation curve, is more simplified than IK2. In addition, g1 thresholding is introduced to further reduce computational time and make the suggested methods comparable to the conventional nonlinear fitting approach. To validate the feasibility of the suggested methods, studies using simulation, liquid phantom, and in vivo settings were performed. In the meantime, the suggested methods were implemented and tested on three types of Arduino (Arduino Due, Arduino Nano 33 BLE Sense, and Portenta H7) to demonstrate the possibility of miniaturizing the DCS systems using microcotrollers for signal processing. Results: The simulation and experimental results confirm that both IK2 and INISg1 are sufficiently relevant to capture the changes in blood flow information. More interestingly, when g1 thresholding was applied, our results showed that INISg1 outperformed IK2. It was further confirmed that INISg1 with g1 thresholding implemented on a PC and Portenta H7, an advanced Arduino board, performed faster than did the deep learning-based, state-of-the-art processing method. Conclusion: Our findings strongly indicate that INISg1 with g1 thresholding could be an alternative approach to derive relative blood flow information via DCS, which may contribute to the simplification of DCS methodologies.
KW - Blood flow
KW - Diffuse correlation spectroscopy
KW - Numerical integration
UR - http://www.scopus.com/inward/record.url?scp=85132749088&partnerID=8YFLogxK
U2 - 10.1016/j.cmpb.2022.106933
DO - 10.1016/j.cmpb.2022.106933
M3 - Article
C2 - 35728393
AN - SCOPUS:85132749088
SN - 0169-2607
VL - 222
JO - Computer Methods and Programs in Biomedicine
JF - Computer Methods and Programs in Biomedicine
M1 - 106933
ER -