An analysis of homeostatic motion control system for a hybrid-driven underwater glider

Khalid Isa, M. R. Arshad

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

8 Citations (Scopus)

Abstract

This paper presents an analysis of homeostatic controller, which controls the motion of a hybrid-driven underwater glider. The homeostatic controller is inspired from a biological process known as homeostasis, which maintains a stable state in the face of massively dynamics conditions. Within a biological context, organism homeostasis is an emergent property of the interactions between nervous, endocrine and immune system. Artificially these three systems are presented as Artificial Neural Network (ANN), Artificial Endocrine System (AES) and Artificial Immune System (AIS). The ANN is designed as the controller backbone, the AES is designed as the weight tuner, and the AIS is designed as the optimizer of the control system. The design objective is to obtain better control performance of the motion control system which includes the disturbance from the water currents. We have simulated the algorithm by using MatlabTM, and the results demonstrated that the homeostatic controller reduced the cost function of the control system and produced better control performance than the neuroendocrine controller.

Original languageEnglish
Title of host publication2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Subtitle of host publicationMechatronics for Human Wellbeing, AIM 2013
Pages1570-1575
Number of pages6
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013 - Wollongong, NSW, Australia
Duration: 9 Jul 201312 Jul 2013

Publication series

Name2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013

Conference

Conference2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013
Country/TerritoryAustralia
CityWollongong, NSW
Period9/07/1312/07/13

Fingerprint

Dive into the research topics of 'An analysis of homeostatic motion control system for a hybrid-driven underwater glider'. Together they form a unique fingerprint.

Cite this