A MULTI-TASK LEARNING METHOD FOR WEAKLY SUPERVISED SOUND EVENT DETECTION

Sichen Liu, Feiran Yang, Fang Kang, Jun Yang

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

3 Citations (Scopus)

Abstract

In weakly supervised sound event detection (SED), only coarse-grained labels are available, and thus the supervision information is quite limited. To fully utilize prior knowledge of the time-frequency masks of each sound event, we propose a novel multi-task learning (MTL) method that takes SED as the main task and source separation as the auxiliary task. For active events, we minimize the overlap of their masks as the segment loss to learn distinguishing features. For inactive events, the proposed method measures the activity of masks as silent loss to reduce the insertion error. The auxiliary source separation task calculates an extra penalty according to the shared masks, which can further incorporate prior knowledge in the form of regularization constraints. We demonstrated that the proposed method can effectively reduce the insertion error and achieve a better performance in SED task than single-task methods.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8802-8806
Number of pages5
ISBN (Electronic)9781665405409
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: 23 May 202227 May 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period23/05/2227/05/22

Keywords

  • multi-task learning (MTL)
  • Sound event detection (SED)
  • source separation (SS)
  • weakly supervised

Fingerprint

Dive into the research topics of 'A MULTI-TASK LEARNING METHOD FOR WEAKLY SUPERVISED SOUND EVENT DETECTION'. Together they form a unique fingerprint.

Cite this