TY - JOUR
T1 - A Hybrid Framework for Lung Cancer Classification
AU - Ren, Zeyu
AU - Zhang, Yudong
AU - Wang, Shuihua
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - Cancer is the second leading cause of death worldwide, and the death rate of lung cancer is much higher than other types of cancers. In recent years, numerous novel computer-aided diagnostic techniques with deep learning have been designed to detect lung cancer in early stages. However, deep learning models are easy to overfit, and the overfitting problem always causes lower performance. To solve this problem of lung cancer classification tasks, we proposed a hybrid framework called LCGANT. Specifically, our framework contains two main parts. The first part is a lung cancer deep convolutional GAN (LCGAN) to generate synthetic lung cancer images. The second part is a regularization enhanced transfer learning model called VGG-DF to classify lung cancer images into three classes. Our framework achieves a result of 99.84% ± 0.156% (accuracy), 99.84% ± 0.153% (precision), 99.84% ± 0.156% (sensitivity), and 99.84% ± 0.156% (F1-score). The result reaches the highest performance of the dataset for the lung cancer classification task. The proposed framework resolves the overfitting problem for lung cancer classification tasks, and it achieves better performance than other state-of-the-art methods.
AB - Cancer is the second leading cause of death worldwide, and the death rate of lung cancer is much higher than other types of cancers. In recent years, numerous novel computer-aided diagnostic techniques with deep learning have been designed to detect lung cancer in early stages. However, deep learning models are easy to overfit, and the overfitting problem always causes lower performance. To solve this problem of lung cancer classification tasks, we proposed a hybrid framework called LCGANT. Specifically, our framework contains two main parts. The first part is a lung cancer deep convolutional GAN (LCGAN) to generate synthetic lung cancer images. The second part is a regularization enhanced transfer learning model called VGG-DF to classify lung cancer images into three classes. Our framework achieves a result of 99.84% ± 0.156% (accuracy), 99.84% ± 0.153% (precision), 99.84% ± 0.156% (sensitivity), and 99.84% ± 0.156% (F1-score). The result reaches the highest performance of the dataset for the lung cancer classification task. The proposed framework resolves the overfitting problem for lung cancer classification tasks, and it achieves better performance than other state-of-the-art methods.
KW - deep learning
KW - generative adversarial networks
KW - image classification
KW - neural network
KW - transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85130132320&partnerID=8YFLogxK
U2 - 10.3390/electronics11101614
DO - 10.3390/electronics11101614
M3 - Article
AN - SCOPUS:85130132320
SN - 2079-9292
VL - 11
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 10
M1 - 1614
ER -