Weakly Supervised Online Action Detection for Infant General Movements

Tongyi Luo, Jia Xiao, Chuncao Zhang, Siheng Chen, Yuan Tian, Guangjun Yu, Kang Dang, Xiaowei Ding*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

2 Citations (Scopus)

Abstract

To make the earlier medical intervention of infants’ cerebral palsy (CP), early diagnosis of brain damage is critical. Although general movements assessment (GMA) has shown promising results in early CP detection, it is laborious. Most existing works take videos as input to make fidgety movements (FMs) classification for the GMA automation. Those methods require a complete observation of videos and can not localize video frames containing normal FMs. Therefore we propose a novel approach named WO-GMA to perform FMs localization in the weakly supervised online setting. Infant body keypoints are first extracted as the inputs to WO-GMA. Then WO-GMA performs local spatio-temporal extraction followed by two network branches to generate pseudo clip labels and model online actions. With the clip-level pseudo labels, the action modeling branch learns to detect FMs in an online fashion. Experimental results on a dataset with 757 videos of different infants show that WO-GMA can get state-of-the-art video-level classification and clip-level detection results. Moreover, only the first 20% duration of the video is needed to get classification results as good as fully observed, implying a significantly shortened FMs diagnosis time. Code is available at: https://github.com/scofiedluo/WO-GMA.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages721-731
Number of pages11
ISBN (Print)9783031164330
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sept 202222 Sept 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13432 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Keywords

  • Fidgety movements (FMs)
  • General movements assessment
  • Online action detection
  • Weakly supervised

Fingerprint

Dive into the research topics of 'Weakly Supervised Online Action Detection for Infant General Movements'. Together they form a unique fingerprint.

Cite this