TY - JOUR
T1 - Water-Processed Ultrathin Crystalline Indium–Boron–Oxide Channel for High-Performance Thin-Film Transistor Applications
AU - Xu, Wangying
AU - Peng, Tao
AU - Li, Yujia
AU - Xu, Fang
AU - Zhang, Yu
AU - Zhao, Chun
AU - Fang, Ming
AU - Han, Shun
AU - Zhu, Deliang
AU - Cao, Peijiang
AU - Liu, Wenjun
AU - Lu, Youming
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Thin-film transistors (TFTs) made of solution-processable transparent metal oxide semiconductors show great potential for use in emerging large-scale optoelectronics. However, current solution-processed metal oxide TFTs still suffer from relatively poor device performance, hindering their further advancement. In this work, we create a novel ultrathin crystalline indium–boron–oxide (In-B-O) channel layer for high-performance TFTs. We show that high-quality ultrathin (~10 nm) crystalline In-B-O with an atomically smooth nature (RMS: ~0.15 nm) could be grown from an aqueous solution via facile one-step spin-coating. The impacts of B doping on the physical, chemical and electrical properties of the In2O3 film are systematically investigated. The results show that B has large metal–oxide bond dissociation energy and high Lewis acid strength, which can suppress oxygen vacancy-/hydroxyl-related defects and alleviate dopant-induced carrier scattering, resulting in electrical performance improvement. The optimized In-B-O (10% B) TFTs based on SiO2/Si substrate demonstrate a mobility of ~8 cm2/(V s), an on/off current ratio of ~106 and a subthreshold swing of 0.86 V/dec. Furthermore, by introducing the water-processed high-K ZrO2 dielectric, the fully aqueous solution-grown In-B-O/ZrO2 TFTs exhibit excellent device performance, with a mobility of ~11 cm2/(V s), an on/off current of ~105, a subthreshold swing of 0.19 V/dec, a low operating voltage of 5 V and superior bias stress stability. Our research opens up new avenues for low-cost, large-area green oxide electronic devices with superior performance.
AB - Thin-film transistors (TFTs) made of solution-processable transparent metal oxide semiconductors show great potential for use in emerging large-scale optoelectronics. However, current solution-processed metal oxide TFTs still suffer from relatively poor device performance, hindering their further advancement. In this work, we create a novel ultrathin crystalline indium–boron–oxide (In-B-O) channel layer for high-performance TFTs. We show that high-quality ultrathin (~10 nm) crystalline In-B-O with an atomically smooth nature (RMS: ~0.15 nm) could be grown from an aqueous solution via facile one-step spin-coating. The impacts of B doping on the physical, chemical and electrical properties of the In2O3 film are systematically investigated. The results show that B has large metal–oxide bond dissociation energy and high Lewis acid strength, which can suppress oxygen vacancy-/hydroxyl-related defects and alleviate dopant-induced carrier scattering, resulting in electrical performance improvement. The optimized In-B-O (10% B) TFTs based on SiO2/Si substrate demonstrate a mobility of ~8 cm2/(V s), an on/off current ratio of ~106 and a subthreshold swing of 0.86 V/dec. Furthermore, by introducing the water-processed high-K ZrO2 dielectric, the fully aqueous solution-grown In-B-O/ZrO2 TFTs exhibit excellent device performance, with a mobility of ~11 cm2/(V s), an on/off current of ~105, a subthreshold swing of 0.19 V/dec, a low operating voltage of 5 V and superior bias stress stability. Our research opens up new avenues for low-cost, large-area green oxide electronic devices with superior performance.
KW - In-B-O
KW - ZrO dielectric
KW - atomically smooth
KW - crystalline
KW - thin-film transistors
KW - ultrathin
KW - water processed
UR - http://www.scopus.com/inward/record.url?scp=85127309889&partnerID=8YFLogxK
U2 - 10.3390/nano12071125
DO - 10.3390/nano12071125
M3 - Article
AN - SCOPUS:85127309889
SN - 2079-4991
VL - 12
JO - Nanomaterials
JF - Nanomaterials
IS - 7
M1 - 1125
ER -