Abstract
Efficient upconversion luminescence has been observed from CdSe nanoparticles ranging in size from 2.5 to 6 nm. The upconversion luminescence exhibits a near-quadratic laser power dependence. Emissions from both excitons and trap states are observed in the upconversion and photoluminescence spectra, and in the upconversion luminescence the emission from the trap states is enhanced relative to the trap-state emission in the photoluminescence. The upconversion decay lifetimes are slightly longer than the photoluminescence decay lifetimes. Time-resolved spectral measurements indicate that this is due to the involvement of long decay components from surface or trap states. Both the photoluminescence and upconversion luminescence decrease in intensity with increasing temperature due mainly to thermal quenching. All the observations indicate that trap states work as emitters rather than as intermediate states for upconversion luminescence and that two-photon absorption is the likely excitation mechanism.
Original language | English |
---|---|
Article number | 224708 |
Journal | Journal of Chemical Physics |
Volume | 122 |
Issue number | 22 |
DOIs | |
Publication status | Published - 8 Jun 2005 |
Externally published | Yes |