Up to a double cover, every regular connected graph is isomorphic to a Schreier graph

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that every connected locally finite regular graph is either isomorphic to a Schreier graph, or has a double cover which is isomorphic to a Schreier graph.
Original languageEnglish
Pages (from-to)373-379
JournalBulletin of the Belgian Mathematical Society - Simon Stevin
Volume28
Issue number3
Publication statusPublished - Mar 2022

Keywords

  • Cayley graphs
  • coverings
  • perfect matchings
  • regular graphs
  • Schreier graphs

Fingerprint

Dive into the research topics of 'Up to a double cover, every regular connected graph is isomorphic to a Schreier graph'. Together they form a unique fingerprint.

Cite this